GANDALF Framework User Guide

Version 1.1 December 2011

ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG PHYSIKALISCHES INSTITUT ABTEILUNG PROF. DR. KAY KÖNIGSMANN PHYSIK DER TEILCHEN UND KERNE

Revision History

The following table shows the revision history for this document.

Date	Version	Revision		
09/09/2011	1.0	Initial release		
		CPLD design 2.1.3		
12/06/2011	1.1	CPLD design 2.2.2		
		Fast Registers		
		Configuration Memory Registers		
		Contact		

Table of Contents

1	GANDALF Firmware Registers	1								
	1.1 VME Interface Registers	1								
	1.2 Fast Registers	3								
	1.3 Configuration Memory Registers	10								
	1.4 The vme_write command	23								
	1.5 The $gandalf_status$ command \ldots	25								
2	GANDALF Data Format Definitions	27								
	2.1 GANDALF Data Format	27								
	2.1.1 GANDALF Transient Analyzer Data	27								
	2.1.2 GANDALF TDC Data	29								
3	Connectivity Tables	39								
	3.1 GANDALF Backplane Connectors	39								
	3.2 Mezzanine Card Socket Up/Down Connectors	43								
	3.3 Mezzanine Card Socket Central Connector	52								
4	VXS Crate Power Supply Specification	53								
5	GANDALF Module Device Overview	55								
6	Contact 59									

1 GANDALF Firmware Registers

1.1 VME Interface Registers

crate can be select	ted by DIP switches ($SW1$, SW2) Please refer to http://hadron.physik.uni-freiburg.de/gandalf for updates.
VME address	Name	Description
0xE0[HEXID(8)]00FC	BOARDSTATUS	Returns 0x[CONF(4)][HEXID(8)]'00'[GeoAdd(6)]'00'[SN(10)] of module
		with [HEXID(8)].
$0 \times E0[HEXID(8)]3000$	R_SPY_FIFO	Reads the valid data word from the output of the Spy FIFO.
0xE0[HEXID(8)]0010	ARMBROADCAST	Resets module with [HEXID(8)] to accept broadcasting data.
0xE0[HEXID(8)]8000	BC_FPGA_CFG	VME address to write the broadcast configuration data for the DSP $(U9)$
		or the MEM-FPGA $(U25)$ to the VME backplane (the DSP-FPGA has
		to be configured first). The rightmost GANDALF module located in the
		VME crate must be addressed.
0xE0[HEXID(8)]0014	BC_SWITCH	VME address to switch from DSP-FPGA $(U9)$ configuration to MEM-
		FPGA $(U25)$ configuration. The rightmost GANDALF module located
		in the VME crate must be addressed.
0xE0[HEXID(8)]0004	DISPLAY_W	VME address to write data to the front display. Use the DATAWORD(32)
		= DISP0(8)&DISP1(8)&DISP2(8)&DISP3(8) to define the values shown
		on the 4 segment display. The following values can be set with correspond-
		ing hex values $0x00$ to $0x12$: = 0,1,2,,9,A,B,C,D,E,F,G,S,X.
$0 \times E0[HEXID(8)]2XXX$	CFM_R_W	VME address to read or write data from/to the configuration memory.
		See section 1.3.
0xE0[HEXID(8)]7XXX	SET_FR	VME address to set a fast register command. See section 1.2.

 Table 1.1: VME address for communication with the GANDALF CPLD. The [HEXID(8)] to address the GANDALF modules located in a VME crate can be selected by DIP switches (SW1, SW2) Please refer to http://hadron.physik.uni-freiburg.de/gandalf for updates.

1.2 Fast Registers

Table 1.2: Table of Fast Register Commands. In the VHDL firmware the Fast Registers are represented in a 256 bit bus. VHDL_SIG gives the
corresponding number of the bus member. How to set a Fast Register is explained in 1.4. Please refer to http://hadron.physik.uni-freiburg.de/gandalf for updates.

FR Name	FR_ADDR	VHDL_SIG	PULSE_TYPE	Description
DAC_CALIB	0x00C	3	const (TYPE = $0x0/1$)	Disables/Enables DAC
				calibration.
TRG_TEMP_RDOUT	0x010	4	pulse (TYPE = $0x2$)	Triggers readout of all
				temperature values (AMC,
				FPGA temp sensors) and
				all voltage values (FPGA
				voltage sensors).
RD_EEPROM_UP	0x018	6	pulse (TYPE = $0x2$)	Triggers readout of EEP-
				ROM data to configura-
				tion memory of mezzanine
				in card slot up (this takes
				200ms).
WR_EEPROM_UP	0x01C	7	pulse (TYPE = $0x2$)	Triggers storage of config-
				uration memory data to
				EEPROM of mezzanine in
				card slot up (this takes
				1.0s)
RD_EEPROM_DN	0x020	8	pulse (TYPE = $0x2$)	Triggers readout of EEP-
				ROM data to configura-
				tion memory of mezzanine
				in card slot down (this
				takes $200 \mathrm{ms}$).

4

FR Name	FR_ADDR	VHDL_SIG	PULSE_TYPE	Description
WR_EEPROM_DN	0x024	9	pulse (TYPE = $0x2$)	Triggers storage of config-
				uration memory data to
				EEPROM of mezzanine in
				card slot down (this takes
				1.0s).
LOAD_SI	0x028	10	pulse (TYPE = $0x2$)	Triggers configuration
				of the $SI5326$ clock
				synthesizer located on
				the GANDALF module
				and all SI5326 on the
				mounted AMCs. The
				configuration data is
				stored in the configura-
				tion memory registers
				SI_CONF_DATA0 -
				SI_CONF_DATA11
SET_DACs	0x02C	11	pulse ($TYPE = 0x2$)	Triggers configuration of
				the $AD5665R$ DACs lo-
				cated on the AMCs. The
				DAC values are stored in
				the configuration memory
				registers DAC_VAL0 -
				$DAC_VAL3.$

 Table 1.2: Table of Fast Register Commands (continued).

	Table 1.2: Ta	able of Fast Register	Commands (continued).	
FR Name	FR_ADDR	VHDL_SIG	PULSE_TYPE	Description
TRG_DAC_CALIB	0x030	12	pulse (TYPE = $0x2$)	Triggers the automatic
				DAC calibration. New
				DAC values are written
				to the DAC_VAL0 -
				DAC_VAL3 registers.
$LOAD_G_CONF_VAL$	0x034	13	pulse ($TYPE = 0x2$)	Updates all configuration
				values written into the
				configuration memory to
				the active FPGA logic.
VME_RESET0	0x038	14	pulse ($TYPE = 0x2$)	Performs a reset on reset
				level 0.
VME_RESET1	0x03C	15	pulse ($TYPE = 0x2$)	Performs a reset on reset
				level 1.
VME_RESET2	0x040	16	pulse (TYPE = $0x2$)	Performs a reset on reset
				level 2.
EXT_BOS	0x044	17	pulse (TYPE = $0x2$)	Used to generate an arti-
				ficial BOS^1 signal. Can
				be used if no TCS^2 is
			· · · · · · · · · · · · · · · · · · ·	adapted.
EXT_EOS	0x048	18	pulse ($TYPE = 0x2$)	Used to generate an artifi-
				cial EOS^3 signal. Can be
				used if no TCS is adapted.

¹Begin Of Spill ²Trigger Control System ³End Of Spill

FR Name	FR_ADDR	VHDL_SIG	PULSE_TYPE	Description
ART_TRG	0x04C	19	pulse (TYPE = $0x2$)	Used to generate an artifi-
				cial trigger signal. Can be
				used if no TCS is adapted.
SLINK_RESET	0x050	20	pulse (TYPE = $0x2$)	Triggers the S-LINK reset
				procedure as explained in
				the S-LINK specification.
SMUX_RESET	0x054	21	pulse (TYPE = $0x2$)	Triggers a reset signal on
				the $SRESET$ pin C30
				(P2,see Tab. 3.2) to per-
				form a common reset on
				up to four SMUX transi-
				tion cards.
WR_STATUS	0x058	22	pulse (TYPE = $0x2$)	Writes the status flags of
				the GANDALF to cfmem
				adress STATUS1.
RES_CT_BOS	0x05C	23	pulse (TYPE = $0x2$)	Enables the reset of the
				coarse time at the next
				BOS. This syncronizes dif-
				feren G boards.

 Table 1.2: Table of Fast Register Commands (continued).

Table 1.2: Table of Fast Register Commands (continued).								
FR Name	FR_ADDR	VHDL_SIG	PULSE_TYPE	Description				
SELF_TRG	0x060 - 0x09C	24 - 39	const ($TYPE = 0x1$)	Specifies the analog				
				channel which is allowed				
				to generate a "self trig-				
				ger", if the analog signal				
				reaches a value above				
				the constant defined in				
				the configuration regis-				
				ters $THRES_VAL0$ -				
				$THRES_VAL3.$				
TOGGLE_TCS_RATE	0x0A0	40	const (TYPE = $0x0$ or $0x1$)	Used to manually toggle				
				the RATE Pin. This Fas-				
				tRegister can be used if				
				the CLC016 on the Fibre				
				GIMLI can not lock to the				
				clock signal.				
$FR_ReadoutTigerReady$	0x0A4	41	const ($TYPE = 0x1$)	Must be set to 1, when				
				ReadoutTiger is ready.				
				Enables the VXS SLINK				
				outputs.				
$F_FR_T riggerTigerReady$	0x0A8	42	const (TYPE = 0x1)	Must be set to 1, when				
				TriggerTiger is ready. En-				
				ables the VXS Trigger out-				
				puts.				
$FR_StartVXSLinkCal$	0x0A0	43	const (TYPE = $0x0$ or $0x1$)	Used to start the cali-				
				bration of the VXS data				
				transfer link.				

FR Name	FR_ADDR	VHDL_SIG	PULSE_TYPE	Description
PROGRAMM_UP_CARD	0x0C8	50	const ($TYPE = 0x1$)	Used to trigger the pro-
				gramming of the FPGA lo-
				cated on the OMC in Mez-
				zanine Card Slot Up.
PROGRAMM_DN_CARD	$0 \mathrm{x} 0 \mathrm{C} \mathrm{C}$	51	const (TYPE = $0x1$)	Used to trigger the pro-
				gramming of the FPGA lo-
				cated on the OMC in Mez-
				zanine Card Slot Down.
READ_INIT_DONE	0x0D0	52	pulse (TYPE = $0x2$)	Read INIT and DONE-
				Pin of the ARWEN
				FPGA.
DATA_VALID	0x0D4	53	pulse (TYPE = $0x2$)	Used for programming.
SWEEP_SI	0x0F0	60	pulse ($TYPE = 0x2$)	Starts sweep process of
				the SI clock sythesizers for
				phase offset alignment.
UP_SWEEP_STAT	0x0F4	61	pulse ($TYPE = 0x2$)	Updates the counters for
				the statistics sweep algo-
				rithm.
RESET_SI	0x0F8	62	pulse (TYPE = $0x2$)	Resets all mounted SI
				chips (GANDALF and
				Mezzanine Card slots) us-
				ing the reset in pin of the
				chip.

 Table 1.2: Table of Fast Register Commands (continued).

1.3 Configuration Memory Registers

bit bit <th>Word 7 0x7</th> <th>Word 6 0x6</th> <th>Word 5 0x5</th> <th>Word 4 0x4</th> <th>Word 3 0x3</th> <th>Word 2 0x2</th> <th>Word 1 0x1</th> <th>Word 0 0x0</th> <th>32bx4096</th> <th>32bx4096</th> <th>32bx1024 VHDL Addr</th> <th></th>	Word 7 0x7	Word 6 0x6	Word 5 0x5	Word 4 0x4	Word 3 0x3	Word 2 0x2	Word 1 0x1	Word 0 0x0	32bx4096	32bx4096	32bx1024 VHDL Addr	
NACE_ARTS PACAGE PACAGE PACAGE PACAGE PACAG	0x1C	0x18	0x14	0x10	0x0C	0x08	0x04	0x00	VME Addr 3	Subgrp Offset		
NPC2220010 Correct Socket Up Mezzanine Card Socket Up 800				PROD DATE	STATUS1	STATUS0	IDENTITY1	IDENTITY0	000	000	000	
Merzanine Card Socket Up Merzanine Card Socket Up Merzanine Card Socket Up Mas. stri Bas. stri					SI_FIRM				020	020	008	
Merzzanine Card Socket UU Merzzanine Card Socket UU Merzzanine Card Socket UU 888.8								TEMP0	040	040	010	
Merzanine Card Socket Up Merzanine Card Socket Duvin 883,845									060	060	018	
NAIL_SET2 NAIL_SET2 NAIL_SET3 NAIL_SET3 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>080</td><td>080</td><td>020</td><td>_</td></t<>									080	080	020	_
ARAL_ET? ARAL_ET? ARAL_ET ARAL_ET DAG. W13 DAC. W13 DAC. W14 <									0A0	0A0	028	<
Nets vk3 Pres vk3	BASL_SET3	BASL_SET2	BASL_SET1	BASL_SET0	DAC_VAL3	DAC_VAL2	DAC_VAL1	DAC_VAL0	0C0	0C0	030	Ē
SCORPT SLONPS SLONPS<					THRES_VAL3	THRES_VAL2	THRES_VAL1	THRES_VAL0	0E0	0E0	038	Ň
Surface Card Socket Up Merzanine Card Socket Down 36 0 0000 100 0000000 100 00000 100 000000									100	100	040	N
Nine Card Socket UP Merzanine Card Socket UP 1000000000000000000000000000000000000									120	120	048	<u>a</u>
Ine Card Socket Up Merzanine Card Socket Down 188 388									140	140	050	⊒.
Conversion Signature signa									100	180	058	2
Card Socket Up Mezzanine Card Socket Down 100									140	140	000	æ
ard Socket Up Mezzanine Card Socket Up slower									100	100	070	0
BLCOMF									160	1E0	078	۵.
J Socket Up Mezzanine Card Socket Down al Covera si Covera	SI CONF7	SI CONF6	SI CONF5	SI CONF4	SI CONF3	SI CONF2	SI CONF1	SI CONF0	200	200	080	2
Socket Up Merzanine Card Socket Down 383833 383 <t< td=""><td></td><td></td><td></td><td></td><td>SI CONF11</td><td>SI CONF10</td><td>SI CONF9</td><td>SI CONF8</td><td>220</td><td>220</td><td>088</td><td>~</td></t<>					SI CONF11	SI CONF10	SI CONF9	SI CONF8	220	220	088	~
Ocket Up Merzzanine Card Socket Down 83 88 80 80 80 80 80 80 80 80 80 80 80 80 80 8									240	240	090	Š
Cket Up Merzzanine Card Socket Down 333300 300 100 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>260</td><td>260</td><td>098</td><td>ğ</td></td<>									260	260	098	ğ
Cet Up Mezzanine Card Socket Down 3 888 000000000000000000000000000000000000									280	280	0A0	<u><u></u></u>
It Up Merzzanine Card Socket Down 200<									2A0	2A0	0A8	â
Up Merzzanine Card Socket Down 80 300 600 600 300 500 600 600 600 300 500 600 600 600 300 500 600 600 600 300 500 600 600 600 300 300 300 500 600 300 300 300 500 600 300 300 300 500 600 300 500 600 600 600 400 600 600 600 600 400 600 600 600 600 400 600 600 600 600 600 400 600 600 600 600 600 600 400 600 600 600 600 600 600 600 600 51/00/10 51/00/10 51/00/10									2C0	2C0	0B0	÷.
Image: Control of the status of the									2E0	2E0	0B8	
Merzzanine Card Socilet Down 330									300	300	000	5
Merzzanine Card Statust Statust <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>320</td><td>320</td><td>008</td><td>-</td></t<>									320	320	008	-
Merzzamine Card Size									340	340	0D0	
MCEZZATINE CALL 330 360 6FB 340 340 360 360 6FB 360 360 6FB 360 360 6FB 340 340 360 360 6FB 360 360 6FB 360 360 6FB 340 340 340 360 100 430 030 100 430 030 100 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>360</td> <td>360</td> <td>008</td> <td></td>									360	360	008	
Image: Control of the second of the									340	340	060	
Image: series Image: s									300	300	0E0	
PROD_DATE STATUS1 STATUS1 STATUS1 DENTITY1 DENTITY1 DENTITY2 400 000 100 SUPPRM SUPPRM TEMP0 440 040 110 120 BASL_SET2 BASL_SET2 BASL_SET1 BASL_SET0 DAC VAL3 DAC VAL3 DAC VAL3 DAC VAL3 040 000 1120 BASL_SET2 BASL_SET1 BASL_SET0 DAC VAL3 DAC VAL3 DAC VAL3 DAC VAL3 040 020 100 1140 BASL_SET2 BASL_SET1 BASL_SET0 DAC VAL3 DAC VAL3 DAC VAL3 DAC VAL3 040 020 100 1140 BASL_SET3 BASL_SET2 BASL_SET3 BASL_SET3 BASL_SET3 DAC VAL3 DAC VAL3 DAC VAL3 DAC VAL3 1140 100 100 1140 BASL_SET3 BASL_SET3 BASL_SET3 DAC VAL3 DAC VAL3 100 100 1160 100 1160 100 100 1160 100 100 100 100									3E0	3E0	0F8	
Metzzamire Card Si PRM Intelligitation TelePo 420 020 100 420 020 100				PROD DATE	STATUS1	STATUS0	IDENTITY1	IDENTITY0	400	000	100	
MREZZATIONING TEMPO 440 0.000 110 ABSL_SET3 BASL_SET2 BASL_SET1 BASL_SET0 DAC.VAL2 DAC.VAL2 DAC.VAL0 440 0.000 130 BASL_SET3 BASL_SET1 BASL_SET0 DAC.VAL2 DAC.VAL2 DAC.VAL0 420 0.000 130 BASL_SET3 BASL_SET1 BASL_SET0 DAC.VAL2 DAC.VAL2 DAC.VAL0 420 0.000 130 BASL_SET3 BASL_SET1 BASL_SET0 DAC.VAL2 DAC.VAL2 DAC.VAL2 0.000 100 140 ITTRES.VAL3 ITTRES.VAL3 ITTRES.VAL3 ITTRES.VAL3 100 140 100 140 100 140 100 140 100 140 100 140 100 140 100 140 100 140 100 140 100 100 100 100 140 100 100 100 100 100 100 100 100 100 100 100 100					SI_FIRM				420	020	108	
Merzzantine Carret 400 0000 1120 120 BASL_SET3 BASL_SET1 BASL_SET0 DAC VAL3 THRES VAL2 DAC VAL2 THRES VAL3 DAC VAL3 THRES VAL3 DAC VAL2 THRES VAL3 DAC VAL3 THRES VAL3 THRES VAL3								TEMP0	440	040	110	
ASL SET3 BASL SET1 BASL SET0 DAC, VAL3 DAC, VAL2 DAC, VAL2 THRES, VAL2 DAC, VAL0 THRES, VAL0 DAC, VAL0 460 000 120 480 0800 120 128 BASL SET2 BASL SET1 BASL SET0 DAC, VAL2 THRES, VAL3 DAC, VAL2 THRES, VAL2 DAC, VAL2 THRES, VAL0 DAC, VAL0 460 0.00 130 BASL SET3 BASL SET1 BASL SET0 DAC, VAL2 THRES, VAL2 DAC, VAL2 THRES, VAL2 DAC, VAL2 THRES, VAL2 DAC, VAL0 460 0.00 140 150 BASL SET3 BASL SET1 BASL SET0 DAC, VAL2 DAC, VAL2 DAC, VAL2 DAC, VAL2 500 100 140 150 BASL SET3 DAC, VAL2 THRES, VAL3 THRES, VAL2 THRES, VAL2 140 150 150 160 150 160 150 160 150 160 150 160 150 160 150 160 150 160 150 160 150 160 150 160 160 200 150 160 160 200 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>460</td> <td>060</td> <td>118</td> <td></td>									460	060	118	
BASL SET2 BASL SET1 BASL SET0 DAC VAL3 DAC VAL2 DAC VAL1 DAC VAL0 400 000 128 BASL SET3 BASL SET1 BASL SET0 DAC VAL3 THRES VAL2 THRES VAL1 THRES VAL0 4C0 0C00 138 BASL SET3 BASL SET1 BASL SET1 DAC VAL3 THRES VAL2 THRES VAL1 THRES VAL0 4C0 0C00 138 BASL SET3 BASL SET1 DAC VAL3 THRES VAL2 THRES VAL1 THRES VAL0 4C0 0C00 138 BASL SET3 BASL SET3 DAC VAL3 THRES VAL2 THRES VAL2 THRES VAL1 THRES VAL0 4C0 0C00 138 BASL SET3 DAC VAL3 THRES VAL2 THRES VAL2 THRES VAL1 THRES VAL0 140 130									480	080	120	_
BASL_SET2 BASL_SET1 BASL_SET0 DAC_VAL3 ITHRES_VAL3 DAC_VAL2 ITHRES_VAL2 DAC_VAL1 ITHRES_VAL1 DAC_VAL0 4C0 0C0 138 Image: Set0 Image: VAL3 Image: VAL3 Image: VAL2 Image: VAL3 Image: VA									4A0	0A0	128	\leq
Image: AL2 Image:	BASL_SET3	BASL_SET2	BASL_SET1	BASL_SET0	DAC_VAL3	DAC_VAL2	DAC_VAL1	DAC_VAL0	4C0	0C0	130	ē
SI_CONF7 SI_CONF6 SI_CONF1 SI_CONF1 SI_CONF2 SI_CONF2 SI_CONF1 SI_CONF2 SI_CONF3 SI_CONF2 SI_CONF3 SI_CONF3 SI_CONF2 SI_CONF3 SI_CONF2 SI_CONF3 SI_CONF4 SI_CONF2 SI_CONF3 SI_CONF4 SI_CONF4 SI_CONF3 SI_CONF3 SI_CONF4 SI_CONF3 SI_CONF4 SI_CONF4 SI_CONF4 SI_CONF3 SI_CONF4 SI_CONF4 SI_CONF4 SI_CONF4 SI_CONF4 SI_CONF4		_			THRES_VAL3	THRES_VAL2	THRES_VAL1	THRES_VAL0	4E0	0E0	138	Ň
anine Statulation Statulation <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>500</td><td>100</td><td>140</td><td>N</td></th<>									500	100	140	N
Nine Card Socket Down 188									520	120	148	¥
Image: Conference of the second sec									560	140	159	⊒.
SI CONF6 SI CONF3 SI CONF1 SI CONF1 SI CONF2 SI CONF2 SI CONF3 SI CONF3 SI CONF4 SI CONF3 SI CONF5 SI CONF4 SI CONF5									580	180	160	2
SI_CONF6 SI_CONF5 SI_CONF4 SI_CONF3 SI_CONF2 SI_CONF9 SI_CONF8 CONF0 CONF8 CONF9 SI_CONF8 CONF8 CONF9 CONF8 CONF8 CONF9 CONF9 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>540</td><td>140</td><td>168</td><td>(D</td></t<>									540	140	168	(D
SI_CONF6 SI_CONF6 SI_CONF4 SI_CONF3 SI_CONF1 SI_CONF9 SI_CONF8 SI_CONF9 SI_CONF8 SI_CONF8 SI_CONF9 SI_CONF8 SI_CONF9 SI_CONF8 SI_CONF9 SI_CONF8 SI_CONF9									5C0	1C0	170	0
SI_CONF6 SI_CONF5 SI_CONF4 SI_CONF3 SI_CONF2 SI_CONF0 SI_CONF0 600 200 180 SI_CONF1 SI_CONF1 SI_CONF1 SI_CONF3 SI_CONF3 SI_CONF3 SI_CONF3 SI_CONF3 620 220 188 SI_CONF4 SI_CONF3 SI_CONF3 640 240 198 CKFC GE0 260 180 280 1A0 GE0 260 188 GE0 280 1A0 GE0 220 188 GE0 220 180 GE0 220 180 GE0 220 1A0 GE0 220 180 GE0 220 1A0 GE0 220 1A0 GE0 220 1B8 GE0 220 1A0 GE0 20									5E0	1E0	178	ല
Image: sign of the sign	SI_CONF7	SI_CONF6	SI_CONF5	SI_CONF4	SI_CONF3	SI_CONF2	SI_CONF1	SI_CONF0	600	200	180	5
Image: Section of the sectio					SI_CONF11	SI_CONF10	SI_CONF9	SI_CONF8	620	220	188	
Image: state stat									640	240	190	S
Basel Basel <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>660</td><td>260</td><td>198</td><td>×</td></th<>									660	260	198	×
Image: state of the state									680	280	1A0	×
BCU 2C0 1B0 t COV 6E0 2C0 1B3 6E0 2C0 1B3 700 300 1C0 720 300 1C0 720 320 1C8 720 320 1C8 760 360 1D8 760 360 1D8 780 380 1E0 780 380 1E8 780 380 1E8 720 3C0 1F8 8 8 8 8 720 3C0 1F8									6A0	2A0	1A8	Ð
Non-state Non-state <t< td=""><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td>650</td><td>200</td><td>189</td><td>÷</td></t<>		_							650	200	189	÷
720 330 1C8 0 720 330 1C8 0 740 340 1D0 740 340 1D0 780 380 1E0 780 380 1E0 780 340 1E8 740 340 1E8 780 360 1F8 720 3C0 1F8									700	300	100	
Image: Constraint of the second s									720	320	100	0
No. No. <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>740</td> <td>340</td> <td>100</td> <td>٤</td>									740	340	100	٤
Image: Constraint of the system Image: Constand of the system Image: Constando									760	360	1D8	3
Image: Constraint of the system Image: Constand of the system Image: Constando									780	380	1E0	_
Image: Constraint of the second sec									7A0	3A0	1E8	
7E0 3E0 1F8									7C0	3C0	1F0	
									7E0	3E0	1F8	

Figure 1.1: Overview of the Configuration Memory Registers for the mounted Mezzanine Cards on Mezzanine Card Socket Up and Down. A detailed description of the registers can be found in Tab. 1.3. Please refer to http://hadron.physik.uni-freiburg.de/gandalf for updates.

Word 7	Word 6	Word 5	Word 4	Word 3	Word 2	Word 1	Word 0	32bx4096	32bx4096	32bx1024	
0x7	0x6	0x5	0x4	0x3	0x2	0x1	0x0		Out and Off	VHDL Addr	
UXIC	0180	UX14		UXUC	UXU8		UXUU	VINE Addr	Subgrp Offset	200	
			PROD_DATE	STATUST	STATUSU	DOD FIDM		800	000	200	
				SI_FIRM	MEM_FIRM	DSP_FIRM	CPLD_FIRM	820	020	208	
						TEMP1	TEMPO	840	040	210	
						VCCAUX1	VCCAUXU	860	060	218	
						VCCINT1	VCCINIO	880	080	220	
UCD_RL7	UCD_RL6	UCD_RL5	UCD_RL4	UCD_RL3	UCD_RL2	UCD_RL1	UCD_RL0	8A0	0A0	228	
								8C0	0C0	230	
								8E0	0E0	238	4
								900	100	240	
								920	120	248	
								940	140	250	
								960	160	258	
								980	180	260	
								9A0	1A0	268	
								9C0	1C0	270	
								9E0	1E0	278	
SI_CONF7	SI_CONF6	SI_CONF5	SI_CONF4	SI_CONF3	SI_CONF2	SI_CONF1	SI_CONF0	A00	200	280	
				SI_CONF11	SI_CONF10	SI_CONF9	SI_CONF8	A20	220	288	
								A40	240	290	
								A60	260	298	
						ARWEN_CF(1)	ARWEN_CF(0)	A80	280	2A0	
								AAO	2A0	2A8	
								AC0	2C0	2B0	
								AE0	2E0	2B8	
G CONE7	G CONE6	G CONE5	G CONF4	G CONE3	G CONE2	G CONE1	G CONF0	B00	300	200	t
FRA LATZ	FRA LAT6	ERA LAT5	FRA LAT4	FRA LAT3	ERA LAT2	FRA LAT1	FRA LATO	B20	320	208	0
FRA LAT15	FRA LAT14	FRA LAT13	FRA LAT12	FRA LAT11	FRA LAT10	FRA LAT9	FRA LAT8	B40	340	2D0	5
							SCALER	B60	360	2D8	5
								B80	380	2E0	\leq
						TDC_CONFIG1	TDC_CONFIG0	BAO	340	2E8	Ū.
						100_0011101	100_0011100	BCO	300	2E0	\geq
								BEO	3E0	2F8	
				DAT GEN DADS	DAT GEN DAD2	DAT GEN DAD1	PAT CEN PAPO	C00	400	300	
				TH_OLIG THE	THE OLIVER THE		I'II_OEII_I'IIIO	C20	420	308	□ □
								C40	440	310	1
								C60	460	318	Š.
								C80	480	320	9
								C00	400	328	<u> </u>
								000	400	320	ē
								CEO	400	220	
								D00	4E0	330	÷
								D20	520	348	
								D40	540	350	
								Deo	560	250	
								D80	500	300	
								DA0	540	368	
								DAU	540	300	
								DEC	500	370	
								DEU	SEU	3/8	4
								EUU	600	380	
								E20	620	388	
								E40	640	390	
								E60	660	398	
								E80	680	3A0	
								EAO	6A0	3A8	
								EC0	600	380	
								EEO	6E0	368	4
								F00	700	3C0	
								F20	720	3C8	
								F40	740	3D0	
								F60	760	3D8	
								F80	780	3E0	
								FA0	7A0	3E8	
								FC0	7C0	3F0	
								FE0	7E0	3F8	

Figure 1.2: Overview of the Configuration Memory Registers for the GANDALF module. A detailed description of the registers can be found in Tab. 1.3. Please refer to http://hadron.physik.uni-freiburg.de/gandalf for updates.

 Table 1.3: Table of Configuration Memory Registers. CM_REG gives the name of the configuration memory register and VME_CMR_ADDR the corresponding VME address. The colours orange and yellow declare that the register is used for mezzanine cards installed in mezzanine card slot up and down. Green coloured VME addresses declare that the register is used for the GANDALF module. See also Figs. 1.1, 1.2. The corresponding VHDL address for the configuration memory can also be found in this Figures. CMR_DETAIL gives the names and in brackets the size of the detail of a register. How to set a Configuration Memory Register is explained in 1.4. Please refer to http://hadron.physik.uni-freiburg.de/gandalf for updates.

CM_REG	VME_CMR_ADDR	CMR_DETAIL	Description
IDENTITY0 (11 dnto 0)	0x000	$SERIAL_NO$ (12)	Defines the Serial Number of the installed
	0x400		mezzanine card in mezzanine card slot
			up and down.
IDENTITY0 (15 dnto 12)	0x000	$CARD_TYPE$ (4)	Defines the mezzanine card type:
	0x400		0x0 AMC, 0x1 DMC, 0x2 OMC
IDENTITY0 (17 dnto 16)	0x000	ADC_RES (2)	Defines the resolution of the used ADCs,
	0x400		if AMC is installed:
			0x0 12bit, 0x1 14 bit
IDENTITY0 (19 dnto 18)	0x000	ADC_CONFIG (2)	Defines the configuration of the input
	0x400		circuit of the used AMC:
			0×0 normal, 0×1 interleaved
IDENTITY0 (21 dnto 20)	0x000	DMC_CONFIG (2)	Defines the differential buffer orientation
	0x400		used with the DMC:
			0x0 input, 0x1 output
IDENTITY0 (6 dnto 0)	0x800	$STAT_MON$ (10)	Defines the status of the System Moni-
			toring (TBD).
IDENTITY0 (11 dnto 7)	0x800	GEO_ADDR (10)	Defines the geographic address (slot num-
			ber in Crate) where the GANDALF mod-
			ule is installed to.
IDENTITY0 (21 dnto 12)	0x800	GEO_ID (10)	Defines the COMPASS experiment geo-
			graphic ID. For GANDALF scaler this
			is the base geo ID of cable 0. Increment
			the ID for each cable.

13

Table 1.3: Table of Configuration Memory Registers (continued).					
CM_REG	VME_CMR_ADDR	CMR_DETAIL	Description		
IDENTITY0 (31 dnto 22)	0x800	$SERIAL_NO$ (10)	Defines the Serial Number of the GAN-		
			DALF module.		
IDENTITY1 (9 dnto 0)	0x804	SRC_ID (10)	Defines the COMPASS experiment		
			source ID for the GANDALF module.		
IDENTITY1 (19 dnto 10)	0x804	$2ND_SRC_ID$ (10)	If second chip definitions like chipF1, chip		
			Scaler etc are implemented this defines		
			the COMPASS experiment source ID of		
			the second implementation.		
IDENTITY1 (29 dnto 20)	0x804	$SMUX_ID$ (10)	If data in SMUX format is produced by		
			the GANDALF module this defines its		
			source ID.		
STATUS0 (31 dnto 30)	0x008	$EEPROM_CONF$	Defines if the EEPROM is configured:		
	0x408	(2)	0x0,0x3 not configured, 0x1 configured		
STATUS0 (29 dnto 28)	0x008	$MEZZ_INST$ (2)	Defines if a mezzanine card is installed		
	0x408		(is defined physically when no EEPROM		
			is attached to the I2C bus):		
			0x1 not installed, $0x0, 0x3$ installed		

CM_REG	VME_CMR_ADDR	CMR_DETAIL	Description
STATUS0 (27 dnto 20)	0x808	$DESIGN_TYPE$ (8)	Defines which firmware is loaded into the
			GANDALF module:
			0x00 GANDALF base design,
			0x04 GANDALF transient analyzer,
			0x08 GANDALF TDC,
			0x09 GANDALF scaler,
			0x10 GANDALF meantimer,
			0x11 GANDALF TDC with Scaler,
			0x14 GANDALF Arwen readout,
			$0 \times F0$ GANDALF pattern generator,
			0xF1 GANDALF module test
STATUS1 (2 dnto 0)	0x80C	$SI_G_STATUS(3)$	(2 downto 0) represents the status of
			the <i>out_of_phase</i> , <i>loss_of_signal</i> and
			loss_of_lock of the SI located on the
			GANDALF module.
STATUS1 (6 dnto 4)	0x80C	$SI_B_STATUS(3)$	(2 downto 0) represents the status of
			the <i>out_of_phase</i> , <i>loss_of_signal</i> and
			loss_of_lock of the SI located on the
			MCS down.
STATUS1 (10 dnto 8)	0x80C	SI_A_STATUS(3)	(2 downto 0) represents the status of
			the <i>out_of_phase</i> , <i>loss_of_signal</i> and
			loss_of_lock of the SI located on the
			MCS up.

 Table 1.3: Table of Configuration Memory Registers (continued).

Table 1.3: Table of Configuration Memory Registers (continued).					
CM_REG	VME_CMR_ADDR	CMR_DETAIL	Description		
STATUS1 (14 dnto 12)	0x80C	$TCS_SL_STATUS(3)$	(2 downto 0) represents the status of the		
			<i>io_m_error</i> (representing the io man-		
			ager status), VLDOWN (representing		
			the SLINK status) and TCS_LOL (rep-		
			resenting the TCS lock status of the		
			CLC016).		
STATUS1 (18 dnto 16)	0x80C	$RESET_STATUS(3)$	(2 downto 0) represents the status of the		
			resets RST_Global_Stup_ i .		
STATUS1 (22 dnto 20)	0x80C	$ALARM_STATUS(3)$	(2 downto 0) represents the status of		
			the alarm flags gernerated by the sysmon		
			core inside the Virtex-5 FPGA in the fol-		
			lowing order (2) VCCAUX, (1)VCCINT,		
			(0) TEMP. The default threshold ranges		
			are:		
			• Temperature: (upper limit 95C)		
			• VCCINT: (0.8V - 1.1V)		
			• VCCAUX: (2.38V - 2.63V)		
$PROD_DATE (31 \text{ dnto } 0)$	0x010	$PROD_DATE$ (32)	Defines the production date of the mez-		
	0x410		zanine card or the GANDALF module.		
	0x810		Date format is 0xDDMMYYYY.		

16

CM_REG	VME_CMR_ADDR	CMR_DETAIL	Description
$CPLD_FIRM$ (31 dnto 0)	0x820	$CPLD_FIRM$ (32)	Defines the firmware version of the
			CPLD $(U8)$. Format is for firmware is
			0xVVVVYYYY, where VVVV gives the
			firmware revision number and YYYY the
			year of release.
DSP_FIRM (31 dnto 0)	0x824	DSP_FIRM (32)	Defines the firmware version of the DSP-
			FPGA $(U9)$.
MEM_FIRM (31 dnto 0)	0x828	MEM_FIRM (32)	Defines the firmware version of the MEM-
			FPGA (<i>U25</i>).
SI_FIRM (31 dnto 0)	0x02C	SI_FIRM (32)	Defines the firmware version of the SI
	0x42C		(<i>U11</i>).
	0x82C		
TEMP0 (9 dnto 0)	0x040	AMC_TMP_TOP	Temperature measured by the $TMP175$
	0x440	(10)	placed on the top layer of the AMC.
			All temperature and voltage values are
			updated after toggling Fast Register
			TRG_TEMP_RDOUT (Tab. 1.2).
TEMP0 (25 dnto 16)	0x040	AMC_TMP_BOT	Temperature measured by the $TMP175$
	0x440	(10)	placed on the bottom layer of the AMC.
TEMP0 (9 dnto 0)	0x840	DSP_TMP (10)	Temperature measured by the System-
			Monitor (inside the DSP-FPGA $(U9)$).
TEMP0 (19 dnto 10)	0x840	DSP_TMP_MIN	Minimum temperature measured by the
		(10)	SystemMonitor since configuration.
TEMP0 (29 dnto 20)	0x840	DSP_TMP_MAX	Maximum temperature measured by the
		(10)	SystemMonitor since configuration.

 Table 1.3: Table of Configuration Memory Registers (continued).

Table 1.3: Table of Configuration Memory Registers (continued).					
CM_REG	VME_CMR_ADDR	CMR_DETAIL	Description		
TEMP1 (9 dnto 0)	0x844	MEM_TMP (10)	Temperature measured by the System-		
			Monitor (inside the MEM-FPGA $(U25)$).		
TEMP1 (19 dnto 10)	0x844	MEM_TMP_MIN	Minimum temperature measured by the		
		(10)	SystemMonitor since configuration.		
TEMP1 (29 dnto 20)	0x844	MEM_TMP_MAX	Maximum temperature measured by the		
		(10)	SystemMonitor since configuration.		
VCCAUX0 (9 dnto 0)	0x860	DSP_AUX (10)	Auxiliary voltage $(U_{AUX} = 2.5 \text{ V})$ mea-		
			sured by the SystemMonitor (inside the		
			DSP-FPGA $(U9)$).		
VCCAUX0 (19 dnto 10)	0x860	DSP_AUX_MIN	Minimum auxiliary voltage measured by		
		(10)	the SystemMonitor since configuration.		
VCCAUX0 (29 dnto 20)	0x860	DSP_AUX_MAX	Maximum auxiliary voltage measured by		
		(10)	the SystemMonitor since configuration.		
VCCAUX1 (9 dnto 0)	0x864	MEM_AUX (10)	Auxiliary voltage $(U_{AUX} = 2.5 \text{ V})$ mea-		
			sured by the SystemMonitor (inside the		
			MEM-FPGA $(U25)$).		
VCCAUX1 (19 dnto 10)	0x864	MEM_AUX_MIN	Minimum auxiliary voltage measured by		
		(10)	the SystemMonitor since configuration.		
VCCAUX1 (29 dnto 20)	0x864	MEM_AUX_MAX	Maximum auxiliary voltage measured by		
		(10)	the SystemMonitor since configuration.		
VCCINT0 (9 dnto 0)	0x880	DSP_INT (10)	Internal voltage $(U_{INT} = 1.0 \text{ V})$ mea-		
			sured by the SystemMonitor (inside the		
			DSP-FPGA $(U9)$).		
VCCINT0 (19 dnto 10)	0x880	DSP_INT_MIN	Minimum internal voltage measured by		
		(10)	the SystemMonitor since configuration.		

Table 1.3:	Table of	Configuration	Memory Registers	(continued).
		0	. 0	· · · · · · · · · · · · · · · · · · ·

CM_REG	VME_CMR_ADDR	CMR_DETAIL	Description
VCCINT0 (29 dnto 20)	0x880	DSP_INT_MAX	Maximum internal voltage measured by
		(10)	the SystemMonitor since configuration.
VCCINT1 (9 dnto 0)	0x884	MEM_INT (10)	Temperature measured by the System-
			Monitor (inside the MEM-FPGA $(U25)$).
VCCINT1 (19 dnto 10)	0x884	MEM_INT_MIN	Minimum internal voltage measured by
		(10)	the SystemMonitor since configuration.
VCCINT1 (29 dnto 20)	0x884	MEM_INT_MAX	Maximum internal voltage measured by
		(10)	the SystemMonitor since configuration.
$UCD_RL0-7 (31 \text{ dnto } 0)$	0x8A0 - 0x81C	TBD	Voltage information measured from the
			UCD9081 can be stored here. TBD.
DAC_VAL0-3 (15 dnto 0)	0x0C0-0x0CC	DAC_VAL0-3 (16)	DAC values for the first four ADCs (CH0
	0x4C0-0x4CC		- CH3) located on a AMC.
DAC_VAL0-3 (31 dnto 16)	0x0C0-0x0CC	DAC_VAL4-7 (16)	DAC values for the second four ADCs
	0x4C0-0x4CC		(CH4 - CH7) located on a AMC.
$BASL_SET0-3 (15 dnto 0)$	0x0D0-0x0DC	$BASL_SET0-3$ (16)	DAC values for the first four ADCs (CH0
	0x4D0-0x4DC		- CH3) located on a AMC.
$BASL_SET0-3$ (31 dnto 16)	0x0D0-0x0DC	$BASL_SET4-7$ (16)	DAC values for the second four ADCs
	0x4D0-0x4DC		(CH4 - CH7) located on a AMC.
THR_VAL0-3 (15 dnto 0)	0x0E0-0x0EC	THR_VAL0-3 (16)	Threshold values (in ADC LSB) to gener-
	0x4E0-0x4EC		ate a self trigger for the first four ADCs
			(CH0 - CH3) located on a AMC.
THR_VAL0-3 (31 dnto 16)	0x0E0-0x0EC	THR_VAL4-7 (16)	Threshold values (in ADC LSB) to gen-
	0x4E0-0x4EC		erate a self trigger for the second four
			ADCs (CH4 - CH7) located on a AMC.

 Table 1.3: Table of Configuration Memory Registers (continued).

19

Table 1.3: Table of Configuration Memory Registers (continued).					
CM_REG	VME_CMR_ADDR	CMR_DETAIL	Description		
$SI_CONF0-11$ (31 dnto 0)	0x200-0x22C	<i>SI_CONF0-11</i> (32)	Configuration register for the program-		
	0x600-0x62C		ming of the SI5326. The registers are		
	0xA00-0xA2C		arranged as defined in the text format		
			output of the software utility, DSPLL-		
			sim, provided by Silicon Labs.		
$ARWEN_CF0-1 (31 dnto 0)$	0xA80-0xA84	$ARWEN_CF0-1$ (32)	Address where the Configuration-File		
			and the INIT and DONE data is written		
			to.		
G_CONF0 (15 dnto 0)	0xB00	GEN_LAT (16)	Generic latency value for the time win-		
			dow wherein occuring signals were pro-		
			cessed. This register is used in transient		
			analyzer (GTA) and TDC mode. In GTA		
			TCS trigger arrives the internal logic with		
			25ns latency. The step size is 4ns in in-		
			terleaved mode.		
G_CONF0 (31 dnto 16)	0xB00	GEN_FRA (16)	Generic window size value for the time		
			window wherein occuring signals were		
			processed. This register is used in tran-		
			sient analyzer and TDC mode.		
G_CONF1 (15 dnto 0)	0xB04	GEN_THR (16)	Generic threshold value to generate a self		
			trigger.		
G_CONF1 (31 dnto 16)	0xB04	GEN_FT (16)	Generic threshold value to generate a fast		
			trigger send to the TIGER module.		
G_CONF2 (13 dnto 0)	0xB08	GEN_BASE (14)	Baseline Level to where the input circuit		
			are set to.		

CM_REG	VME_CMR_ADDR	CMR_DETAIL	Description		
G_CONF2 (16)	0xB08	GEN_CLK_SRC (1)	Defines type of mounted GIMLI card. 0		
			fiber, 1 OCXO		
G_CONF3 (7 dnto 0)	0xB0C	DAC_SET_TRL (8)	Defines number of failed DAC calibra-		
			tions until error occurs.		
G_CONF3 (31 dnto 16)	0xB0C	DAC_INIT (16)	Defines initial DAC value.		
G_CONF4 (5 dnto 0)	0xB10	CAL_TRG (6)	Defines TCS calibration trigger type ac-		
			cepted by GANDALF.		
G_CONF4 (8)	0xB10	$CTRG_EN$ (1)	1 Enables or 0 disables calibration trigger		
G_CONF4 (13 dnto 10)	0xB10	RDM (4)	Defines readout mode parameter (see sec-		
			tion 2.1).		
G_CONF5 (5 dnto 0)	0xB14	FRAC (6)	Defines Fraction Value f for the cfd algo-		
			rithm. $f = \frac{1}{2^{FRAC}}$		
G_CONF5 (12 dnto 8)	0xB14	DELAY (5)	Defines Delay Value for the cfd algorithm.		
G_CONF5 (23 dnto 16)	0xB14	THRESHOLD (8)	Defines Threshold value in ADC LSB.		
			This value defines the trigger condition		
			for the cf algorithm and is used as offset		
			for the integral calculation.		
G_CONF6 (31 dnto 0)	0xB18	TBD	TBD		
G_CONF7 (31 dnto 0)	0xB1C	TBD	TBD		
$FRA_LAT0-15 (15 \text{ dnto } 0)$	0xB20-0xB4C	LATENCY0-15 (16)	Latency value for the time window		
			wherein occuring signals were processed		
			(CH0-CH16). This register is used in		
			transient analyzer and TDC mode.		

 Table 1.3: Table of Configuration Memory Registers (continued).

Table 1.3: Table of Configuration Memory Registers (continued).					
CM_REG	VME_CMR_ADDR	CMR_DETAIL	Description		
<i>FRA_LAT0-15</i> (31 dnto 16)	0xB20-0xB4C	FRAMEW0-15 (16)	Window size/Framewidth value for the		
			time window wherein occurring signals		
			were processed (CH0-CH16). This regis-		
			ter is used in transient analyzer and TDC		
			mode.		
SCALER (31 dnto 23)	0xB60	$SC_LATENCY$ (9)	Latency for the GANDALF Scaler.		
SCALER (22 dnto 15)	0xB60	$GATE_LATENCY$ (8)	Gate Latency for the GANDALF Scaler.		
TDC_CONFIG0-1	0xBA0-0xBA4	$TDC_CONFIG0-1$ (32)	Configuration Register for the M1-TDC.		
PAT_GEN_PAR0-3	0xC00-0xC0C	PAT_GEN_PAR0-3	Configuration Register for the Pattern		
		(32)	Generator.		
		1	•		

1.4 The *vme_write* command

• Fast Register: To set a Fast Register use the command

#>./vme_write E0[HEXID(8)][GADDRESS(16)] [PULSE_TYPE(4)],

where

 $[GADDRESS(16)] = [CMD_SEL(4)][FR_ADDR(12)],$

and [HEXID(8)] is the selectable module address which can be changed using the DIP switches (see Fig.1.3). $[CMD_SEL(4)]$ is 0x7 for Fast Registers. $[FR_ADDR(12)]$ is the addressed Fast Register and $[PULSE_TYPE(4)]$ defines the pulse type. There are 256 Fast Registers (see Tab.1.2) and 3 pulse types. With the $[PULSE_TYPE(4)]$, the type of the Fast Register can be defined: 0x0 sets the Register to const '0', 0x1 to '1', 0x2 generates a pulse with a width of one clock cycle of the 40 MHZ clock provided by the CDCE clock synthesizer chip.

• **Configuration Memory Register:** To write data to a Configuration Memory Register use the command

 $\#>./vme_write E0[HEXID(8)][GADDRESS(16)] [DATAWORD(32)]$

where

$$[GADDRESS(16)] = [CMD_SEL(4)][CFMEM_ADDR(12)]$$

 $[CMD_SEL(4)]$ is 0x2 for the communication with the Configuration Memory. $[CFMEM_ADDR(12)]$ is the "VME address" of the Configuration Memory Register and [DATAWORD(32)] can obtain the data which has to be written to the addressed Configuration Memory Register.

To address the registers of the memory from the FPGA logic, the mapping of the RAMB36 is used, which differs from the VME address range. To calculate the address offsets, the following rule is used:

$$[RAMB36_ADDR(12)] \times 4 = [CFMEM_ADDR(12)]$$

= [CFMEM_SUBADDR(12)] + SUBGRP_OFFSET,

where $[RAMB36_ADDR(12)]$ is the address value for RAM access with a range of 0x3FF, $[CFMEM_ADDR(12)]$ has a range of 0xFFF and $[CFMEM_SUBADDR(12)]$ has a range of 0x3FF for the mezzanines subgroups and 0x7FF for the GANDALF subgroup (see Fig.1.1 & 1.2). To read data from CFM use the command

$$\#$$
>./vme_write E0[HEXID(8)][GADDRESS(16)].

Figure 1.3: Picture of the DIP switches to select the [HEXID(8)] of the GANDALF modules. In this picture for example the [HEXID(8)] = 0x37 is set.

1.5 The gandalf_status command

2 GANDALF Data Format Definitions

2.1 GANDALF Data Format

The data format chosen for the GANDALF module is compatible with the S-LINK protocol as defined in the S-LINK specification The structure of the S-LINK header is given in the first three words in Tab. 2.4. The *format(8)* byte, written in the third word of the header, covers extended information about the configuration of the GANDALF modules (see Tab. 2.1). There is a separation between the first event in a run (FER) and a first event in a spill (FES). A detailed description of the COMPASS online data format can be found in

2.1.1 GANDALF Transient Analyzer Data

A GANDALF module equipped with two AMCs can operate as a *transient analyzer*. The AMC can be used in *normal* or *time-interleaved* digitization mode. Therefore, the number of effective digitization channels changes respectively. In *normal mode* 8 ADCs of one AMC build eight effective channels. In the *time-interleaved mode* the 8 ADCs build 4 effective channels. This enumeration of effective channels is used to declare the corresponding channels in the data format.

When the GANDALF module is used as transient analyzer, the following information is given in the FER and FES:

- The serial numbers and configuration status (e.g. *normal* or *time-interleaved mode*) of the used modules and mezzanine cards.
- The sourceID of the GANDALF module and its location in the VME crate (crate slot number).
- The version number of the firmware for the FPGAs.
- Temperatures and voltages measured by the monitoring system.
- DAC and threshold values for the different analog input channels.

The detailed data format structure of the FER and the FES is given in Tabs. 2.4 and 2.5 respectively. Some of the values mentioned above can be set by writing them into the *Configuration Memory* and are printed in **bold** letters (App. 1.3).

For events generated by a physics trigger, from two kinds of data modes can be selected:

• Normal Data Mode

In this mode, the GANDALF module outputs the processed data in data blocks per hit, if the algorithm has detected one or more pulses inside the given window with the corresponding latency. In *Normal Data Mode* the dataset for one physical event consists of n data blocks and includes the following information:

- Integral of all sampling values measured in the frame. A frame is a defined number of sampling words.
- The maximum amplitude of the corresponding hit.
- The calculated time information of the corresponding hit. It is separated in 28 bit coarse time information (number of sampling units) and 10 bit high resolution time information (subdividing the sampling unit by 1024).

The detailed structure of an event in Normal Data Mode is given in Tab. 2.6.

• Debug Data Mode

In this mode, the GANDALF module outputs both, the during the defined time window recorded frame and the processed data. The length of the frames depends on the selected window length. The structure of the GANDALF *Debug Data Mode* consists of an event header, data blocks and an event trailer, containing the following information:

- System monitoring information: FPGA configured, Si locked, TCS status, voltages and temperatures.
- Readout mode (RDM): Normal or Debug Data Mode.
- The window size and the digitized frame data.
- Processed data, as mentioned above, for each hit inside the frame.
- A pulse detection flag which signalizes that the algorithm has detected hits inside the frame.

The detailed structure of an event in *Debug Data Mode* is given in Tab. 2.7. With the register *PRESCALE* (see Tab. 1.3), the occurrence of events in Debug Data format can be selected. By setting the integer value n in the *PRESCALE* register, every n-th event is transferred in Debug Data format and all remaining events are in *Normal Data Mode*. For n = 0x0, any event is processed in *Debug Data Mode*.

2.1.2 GANDALF TDC Data

A GANDALF module equipped with two DMCs can operate as a 128 channel TDC. In this mode, the GANDALF module generates the same data structure as the CATCH module with 16 installed F1-TDCs. A GANDALF module generates TDC data in the same format as a CATCH module to comply with existing offline analysis software The window and latency values for the TDC functionality can be set by choosing the corresponding registers in the *Configuration Memory* (see Tab. 1.3).

7	6	5	4	3	2	1	0
1 = first	1 = HOTL.	1 = 1 & t	1 = high	1 = latch		1 = sparsi-	
event of	CMC	edge	res	mode		fied mode	1=TDC
a run	0 = TDC-	0 = 1 or t	0 = norm	0 = no		0 = debug	readout
(else 0)	CMC/	edge	res	latch mode		mode	
	G-TDC						
1 = first	0 = GeSiCA		0 = nml mode, processed data				
event of	1 = GANDA		1 = nml mode, frame data			0=ADC	
a run	2 = GANDA		2 = nml m	node	e, debug data	or	
(else 0)	3 = Scaler-CMC			3 =			scaler
	4 = FI-ADC HOTLink			4 = ilm mode, processed data			readout
	5 = RICH H		5 = ilm mode, frame data				
	6 =		6 = ilm mode, debug data				
	7 = Scaler H	OTLink			7 =	=	

Table 2.2: Format of TDC data in the debug mode

-3	1)
-		

0-16× (Header, n× DATA, Trailer)

0 tbo event no	. (6) trigger time (9)	xor ch/ch. ID (6)	port (4)	PLL locked
1 0 ch/ch. II	D (6) DA	ГА (16)	port (4)	PLL locked

. . .

1	0	ch/ch. ID (6)	DATA (16)			port (4)	PLL locked
0	tbo	event no. (6)	trigger time (9)	xor	ch/ch. ID (6)	port (4)	PLL locked

error word preceding Header/Data/Trailer

FFF(12)	error coding (20)

	Table 2.3: Format of TDC data in the sparsified mode	
31		0

only data words will be written

geo ID (10)	ch/ch. ID (6)	DATA (16)
geo ID (10)	ch/ch. ID (6)	DATA (16)

error word preceding data with error

F	FF (12	2)	error coo	ding (20)	ng (20)		
1	0	ch/ch. ID (6)	DATA (16)	port (4)	PLL locked		

error word preceding faulty header/trailer

F	FF (1	2)		error coding	rror coding (20)			
0	tbo	event no. (6)	trigger time (9)	xor	ch/ch. ID (6)	port (4)	PLL locked	

Table 2.4: First Event of Run Header from GANDALF.

31 0

S-Link Header

err	ev. type (5)	sou	rce ID (10)	event s	size excl. CTRL (16)	
stat	spill no.	(11)		event no. (20)		
format (8)			#errorwords (8)	tcs error (8)	status (8)	

First Event of Run Header

GANDALF S/	N (10)	GANDALF srcID	0 (10)	CrateSlo	t(5)	#AMC(2)	SysMon (5)
DSP-H	FPGA usrID	(16)	MEM-FPGA usrID(16)				
		CPLD Firmware	e Versi	on (32)			
		DSP Firmware	Versio	on (32)			
		MEM Firmware	e Versi	on(32)			
	TE	BD(24)				SI Conf. 7	$\Gamma ype(8)$
	TBD (16)		GANDALF status (16)				
TBD (6)	$TBD (6) \qquad DSP-FPGA TEMP (10)$				MEM-FPGA TEMP (10)		MP (10)
TBD (6)	$TBD (6) \qquad DSP-FPGA VCC1V0 (10)$				MEM-FPGA VCC1V0 (10)		C1V0(10)
TBD (6)	TBD (6)DSP-FPGA VCCAUX (10)				MEM-	FPGA VCC	AUX (10)

TBD (16)	AMC1 S/N (10)	AMC1 cfg (6)
TBD (16)	AMC2 S/N (10)	AMC2 cfg (6)

 Table 2.4: Format of the First Event of Spill Header from GANDALF (continued).

31 0

TBD (6)	LOLS (2)	AMC1 Ch. ON (8)	CALDONE (8)	CALERR (8)			
TBD (6)	LOLS (2)	AMC2 Ch. ON (8)	CALDONE (8)	CALERR (8)			
TBD (8)		AMC1 Temp. top⊥ (24)					
TBD (8)		AMC2 Temp. top⊥ (24)					

DAC 0 value (16)	DAC 8 value (16)
DAC 7 value (16)	DAC 15 value (16)
Thrsld. 0 value (16)	Thrsld. 8 value (16)
Thrsld. 7 value (16)	Thrsld. 15 value (16)
	·
Da	ata words

Table 2.5: First Event of Spill Header from GANDALF.

S-Link Header

err	ev. type (5)	source ID (10)		e	event size excl. CTRL (16)	
stat	stat spill no. (11)			event no. (20)		
	format (8)		#errorwords (8)	tcs error (8)	status (8)	

First Event of Spill Header

	$GANDALF S/N (10) \qquad GANDALF srcID (10)$		0) CrateSlot (5)		#AMC(2)	SysMon (5)	
GANDALF status (16)			TBD (16)				
	TBD (6)	DSP-FPGA TEMP (10)		TBD (6)		MEM-FPGA TEMP (10)	
	TBD (6)	DSP-FPGA VCC1V0 (10)		TBD (6)		MEM-H	FPGA VCC1V0 (10)
	TBD (6)	DSP-FPGA VCCAUX (10)		TBD (6)		MEM-F	PGA VCCAUX (10)

	TBD (16)	6)	AMC1 S/N (10)	AMC1 cfg (6)	
	TBD (16)	3)	AMC2 S/N (10)	AMC2 cfg (6)	
TBD (6)	LOLS (2)	AMC1 Ch. ON (8)	CALDONE (8)	CALERR (8)	
TBD (6)	LOLS (2)	AMC2 Ch. ON (8)	CALDONE (8)	CALERR (8)	
TBD(8)			AMC1 Temp. top⊥ (24)		
TBD (8)			AMC2 Temp. top⊥ (24)		

Table 2.5:Format of the First I	Event of Spill Header from GANDALF (continued).
31	
DAC 0 value (16)	DAC 8 value (16)
DAC 7 value (16)	DAC 15 value (16)
× /	
Thrsld. 0 value (16)	Thrsld. 8 value (16)
Thrsld. 7 value (16)	Thrsld. 15 value (16)
	Data words

 Table 2.6: Data format of the GANDALF Normal Data Mode.

 $31 \quad \dots \quad 0$

$0-16 \times$ (n × DATA Blocks)

1	ch (4)	Baseline (11)	Integral (16)			
1	Coarse	Time DATA MS	SB (17)	max Amplitude (14)		
1	Coarse	Time DATA LS	BB(21)	High Res $Time(10)$		

 Table 2.7: Data format of the GANDALF Debug Data Mode.

31 0

0-16× (Header, n× DATA Blocks, Trailer)

_							
	0	0	event no. (6)	ch. ID (4)	SysMon (5)	Framesize (11)	RDM (4)

1	0	Data Word 0 (14)	0	0	Data Word 1 (14)
1	0	Data Word 2 (14)	0	0	Data Word 3 (14)

• • •

1	0	Data Word n-1 (14)	0	0	Data Word n (14)

1	ch (4)	Base	line (11)	Integral (16)			
1		Coarse T	ime DATA MS	SB (17)	max Amplitude (14)		
1		Coarse T	ime DATA LS	SB (21)	High Res $Time(10)$		
1	cfd thre	eshold (8)	cfd frac (6)	cfd delay (5)	Frame Time(12)		

0	1	event no. (6)	ch. ID (4)	SysMon (5)	Framesize (11)	RDM (4)
---	---	---------------	------------	--------------	----------------	---------

3 Connectivity Tables

3.1 GANDALF Backplane Connectors

	Z	А	В	\mathbf{C}	D
1	-	D(0)	-	D(8)	+5V
2	GND	D(1)	-	D(9)	GND
3	-	D(2)	-	D(10)	+12V
4	GND	D(3)	-	D(11)	+12V
5	-	D(4)	-	D(12)	-
6	GND	D(5)	-	D(13)	+12V
7	-	D(6)	-	D(14)	+12V
8	GND	D(7)	-	D(15)	-
9	-	GND	-	GND	GAP
10	GND	-	BG3IN	-	GA0
11	-	GND	BG3OUT	BERR	GA1
12	GND	DS1	-	SYSRES	+3.3V
13	-	DS0	-	LWORD	GA2
14	GND	WRITE	-	AM5	+3.3V
15	-	GND	-	A(23)	GA3
16	GND	DTACK	AM0	A(22)	+3.3V
17	-	GND	AM1	A(21)	GA4
18	GND	AS	AM2	A(20)	+3.3V
19	-	GND	AM3	A(19)	-
20	GND	IACK	GND	A(18)	+3.3V
21	-	IACKIN	-	A(17)	-
22	GND	IACKOUT	-	A(16)	+3.3V
23	-	AM4	GND	A(15)	-
24	GND	A(7)	-	A(14)	+3.3V
25	-	A(6)	-	A(13)	-
26	GND	A(5)	-	A(12)	+3.3V
27	-	A(4)	-	A(11)	$\mathrm{LI/I}$
28	GND	A(3)	-	A(10)	+3.3V
29	-	A(2)	-	A(9)	LI/O
30	GND	A(1)	-	A(8)	+3.3V
31	-	-12V	-	+12V	GND
32	GND	+5V	+5V	+5V	+5V

Table 3.1: VME connector (J1) pinout.

	Ζ	А	В	С	D
1	-	SINIT	+5V	SDONE	-
2	GND	SCLK	GND	SDIN	-
3	-	GND	_	SPROG	-
4	GND	UD(0)	A(24)	GND	-
5	-	UD(2)	A(25)	UD(1)	-
6	GND	UD(4)	A(26)	UD(3)	-
7	-	UD(6)	A(27)	UD(5)	-
8	GND	GND	A(28)	UD(7)	-
9	-	UD(8)	A(29)	GND	-
10	GND	UD(10)	A(30)	UD(9)	-
11	-	UD(12)	A(31)	UD(11)	_
12	GND	UD(14)	GND	UD(13)	_
13	-	GND	+5V	UD(15)	_
14	GND	UD(16)	D(16)	UD(17)	-
15	-	UD(18)	D(17)	GND	_
16	GND	UD(20)	D(18)	UD(19)	-
17	-	UD(22)	D(19)	UD(21)	_
18	GND	GND	D(20)	UD(23)	_
19	-	UD(24)	D(21)	UD(25)	-
20	GND	UD(26)	D(22)	GND	_
21	-	UD(28)	D(23)	UD(27)	-
22	GND	UD(30)	GND	UD(29)	_
23	-	GND	D(24)	UD(31)	_
24	GND	UCTRL	D(25)	UDW0	-
25	-	UDW1	D(26)	UDTEST	_
26	GND	UDRESET	D(27)	GND	-
27	-	GND	D(28)	UDWEN	-
28	GND	UDCLK	D(29)	GND	-
29	-	GND	D(30)	LFF	-
30	GND	LDOWN	D(31)	SRESET	-
31	-	-	GND	-	GND
32	GND	-	+5V	-	+5V

Table 3.2: VME connector (J2) pinout. The UD bus in row A and C are used for the S-LINK interface.

	А	В	С	D	Е	F	G
1	TRG_2P	TRG_2N	GND	TRG_0P	TRG_0N	GND	VXS_SCL
2	GND	TRG_6P	TRG_6N	GND	TRG_1P	TRG_1N	GND
3	TRG_3P	TRG_3N	GND	TRG_4P	TRG_4N	GND	VXS_SDA
4	GND	TRG_12P	TRG_12N	GND	TRG_5P	TRG_5N	GND
5	-	-	GND	-	-	GND	-
6	GND	-	-	GND	-	-	GND
7	-	-	GND	-	-	GND	-
8	GND	-	-	GND	-	-	GND
9	-	-	GND	-	-	GND	-
10	GND	-	-	GND	-	-	GND
11	-	-	GND	-	-	GND	-
12	GND	TRG_14P	TRG_14N	GND	TRG_10P	TRG_10N	GND
13	TRG_8P	TRG_8N	GND	TRG_7P	TRG_7N	GND	-
14	GND	TRG_13P	TRG_13N	GND	TRG_15P	TRG_15N	GND
15	TRG_11P	TRG_11N	GND	TRG_9P	TRG_9N	GND	-

Table 3.3: VXS connector (J9) pinout.

3.2 Mezzanine Card Socket Up/Down Connectors

able 3	4: Mezzanine Card Soch	ket Up connector pino	ut $(J\xi$
1	PORT1_0N	VCC-12V	2
3	PORT1_0P	VCC-12V	4
5	PORT1_1N	VCA3V3	6
7	PORT1_1P	VCA3V3	8
9	PORT1_2N	VCA3V3	10
11	PORT1_2P	VCA3V3	12
13	PORT1_3N	VCA3V3	14
15	PORT1_3P	VCA3V3	16
17	PORT1_4N	VCA3V3	18
19	PORT1_4P	VCA3V3	20
21	PORT1_5N	PORT3_0N	22
23	PORT1_5P	PORT3_0P	24
25	PORT1_6N	PORT3_1N	26
27	PORT1_6P	PORT3_1P	28
29	PORT1_7N	PORT3_2N	30
31	PORT1_7P	PORT3_2P	32
33	PORT1_8N	PORT3_3N	34
35	PORT1_8P	PORT3_3P	36
37	PORT1_9N	PORT3_4N	38
39	PORT1_9P	PORT3_4P	40
41	PORT1_10N	PORT3_5N	42
43	PORT1_10P	PORT3_5P	44
45	PORT1_11N	PORT3_6N	46
47	PORT1_11P	PORT3_6P	48
49	PORT1_12N	PORT3_7N	50
51	PORT1_12P	PORT3_7P	52
53	PORT1_13N	PORT3_8N	54
55	PORT1_13P	PORT3_8P	56
57	PORT1_DRYN	PORT3_9N	58
59	PORT1_DRYP	PORT3_9P	60
61	GND	PORT3_10N	62
63	ADC_NC	PORT3_10P	64
65	ADCOFF	PORT3_11N	66
67	GND	PORT3_11P	68
69	SI_RST#	PORT3_12N	70
71	SI_LOL	PORT3_12P	72

(75)

73	GND	PORT3_13N	74
75	GND	PORT3_13P	76
77	CLK_155MHZ_P	PORT3_DRYN	78
79	CLK_155MHZ_N	PORT3_DRYP	80
81	GND	PORT5_0N	82
83	GND	PORT5_0P	84
85	GND	PORT5_1N	86
87	GND	PORT5_1P	88
89	GND	PORT5_2N	90
91	GND	PORT5_2P	92
93	GND	PORT5_3N	94
95	GND	PORT5_3P	96
97	GND	PORT5_4N	98
99	GND	PORT5_4P	100
101	PORT7_0N	PORT5_5N	102
103	PORT7_0P	PORT5_5P	104
105	PORT7_1N	PORT5_6N	106
107	PORT7_1P	PORT5_6P	108
109	PORT7_2N	PORT5_7N	110
111	PORT7_2P	PORT5_7P	112
113	PORT7_3N	PORT5_8N	114
115	PORT7_3P	PORT5_8P	116
117	PORT7_4N	PORT5_9N	118
119	PORT7_4P	PORT5_9P	120
121	PORT7_5N	PORT5_10N	122
123	PORT7_5P	PORT5_10P	124
125	PORT7_6N	PORT5_11N	126
127	PORT7_6P	PORT5_11P	128
129	PORT7_7N	PORT5_12N	130
131	PORT7_7P	PORT5_12P	132
133	PORT7_8N	PORT5_13N	134
135	PORT7_8P	PORT5_13P	136
137	PORT7_9N	PORT5_DRYN	138
139	PORT7_9P	PORT5_DRYP	140
141	PORT7_10N	VCA5V0	142
143	PORT7_10P	VCA5V0	144
145	PORT7_11N	VCA5V0	146
147	PORT7_11P	VCA5V0	148
149	PORT7_12N	VCA5V0	150
151	PORT7_12P	VCA5V0	152
153	PORT7_13N	VCA5V0	154

155	PORT7_13P	VCA5V0	156
157	PORT7_DRYN	VCA5V0	158
159	PORT7_DRYP	VCA5V0	160

	· montanino cara so	ener op connector pin	iout (ot
1	AMCTMS	PORT0_DRYP	2
3	AMCTCK	PORT0_DRYN	4
5	AMCTDI	PORT0_13P	6
7	AMCTDO	PORT0_13N	8
9	GND	PORT0_12P	10
11	GP_SDA	PORT0_12N	12
13	GP_SCL	PORT0_11P	14
15	GND	PORT0_11N	16
17	GND	PORT0_10P	18
19	GND	PORT0_10N	20
21	PORT2_DRYP	PORT0_9P	22
23	PORT2_DRYN	PORT0_9N	24
25	PORT2_13P	PORT0_8P	26
27	PORT2_13N	PORT0_8N	28
29	PORT2_12P	PORT0_7P	30
31	PORT2_12N	PORT0_7N	32
33	PORT2_11P	PORT0_6P	34
35	PORT2_11N	PORT0_6N	36
37	PORT2_10P	PORT0_5P	38
39	PORT2_10N	PORT0_5N	40
41	PORT2_9P	PORT0_4P	42
43	PORT2_9N	PORT0_4N	44
45	PORT2_8P	PORT0_3P	46
47	PORT2_8N	PORT0_3N	48
49	PORT2_7P	PORT0_2P	50
51	PORT2_7N	PORT0_2N	52
53	PORT2_6P	PORT0_1P	54
55	PORT2_6N	PORT0_1N	56
57	PORT2_5P	PORT0_0P	58
59	PORT2_5N	PORT0_0N	60
61	PORT2_4P	GND	62
63	PORT2_4N	GND	64
65	PORT2_3P	GND	66
67	PORT2_3N	SI_SDA	68
69	PORT2_2P	SI_SCL	70
71	PORT2_2N	GND	72
73	PORT2_1P	SI_LOS	74
75	PORT2_1N	MEZZ_ADDR	76
77	PORT2_0P	GND	78
79	PORT2_0N	CLK_38MHZ	80
81	PORT4_DRYP	GND	82

Table 3.5: Mezzanine Card Socket Up connector pinout (J6).

83	PORT4_DRYN	GND	84
85	PORT4_13P	GND	86
87	PORT4_13N	GND	88
89	PORT4_12P	GND	90
91	PORT4_12N	GND	92
93	PORT4_11P	GND	94
95	PORT4_11N	GND	96
97	PORT4_10P	GND	98
99	PORT4_10N	GND	100
101	PORT4_9P	PORT6_DRYP	102
103	PORT4_9N	PORT6_DRYN	104
105	PORT4_8P	PORT6_13P	106
107	PORT4_8N	PORT6_13N	108
109	PORT4_7P	PORT6_12P	110
111	PORT4_7N	PORT6_12N	112
113	PORT4_6P	PORT6_11P	114
115	PORT4_6N	PORT6_11N	116
117	PORT4_5P	PORT6_10P	118
119	PORT4_5N	PORT6_10N	120
121	PORT4_4P	PORT6_9P	122
123	PORT4_4N	PORT6_9N	124
125	PORT4_3P	PORT6_8P	126
127	PORT4_3N	PORT6_8N	128
129	PORT4_2P	PORT6_7P	130
131	PORT4_2N	PORT6_7N	132
133	PORT4_1P	PORT6_6P	134
135	PORT4_1N	PORT6_6N	136
137	PORT4_0P	PORT6_5P	138
139	PORT4_0N	PORT6_5N	140
141	VCC3V3	PORT6_4P	142
143	VCC3V3	PORT6_4N	144
145	VCC3V3	PORT6_3P	146
147	VCC3V3	PORT6_3N	148
149	VCC3V3	PORT6_2P	150
151	VCC3V3	PORT6_2N	152
153	VCC+12V	PORT6_1P	154
155	VCC+12V	PORT6_1N	156
157	VCC+12V	PORT6_0P	158
159	VCC+12V	PORT6_0N	160

1	PORT9_0N	VCC-12V	2
3	PORT9_0P	VCC-12V	4
5	PORT9_1N	VCA3V3	6
7	PORT9_1P	VCA3V3	8
9	PORT9_2N	VCA3V3	10
11	PORT9_2P	VCA3V3	12
13	PORT9_3N	VCA3V3	14
15	PORT9_3P	VCA3V3	16
17	PORT9_4N	VCA3V3	18
19	PORT9_4P	VCA3V3	20
21	PORT9_5N	PORT11_0N	22
23	PORT9_5P	PORT11_0P	24
25	PORT9_6N	PORT11_1N	26
27	PORT9_6P	PORT11_1P	28
29	PORT9_7N	PORT11_2N	30
31	PORT9_7P	PORT11_2P	32
33	PORT9_8N	PORT11_3N	34
35	PORT9_8P	PORT11_3P	36
37	PORT9_9N	PORT11_4N	38
39	PORT9_9P	PORT11_4P	40
41	PORT9_10N	PORT11_5N	42
43	PORT9_10P	PORT11_5P	44
45	PORT9_11N	PORT11_6N	46
47	PORT9_11P	PORT11_6P	48
49	PORT9_12N	PORT11_7N	50
51	PORT9_12P	PORT11_7P	52
53	PORT9_13N	PORT11_8N	54
55	PORT9_13P	PORT11_8P	56
57	PORT9_DRYN	PORT11_9N	58
59	PORT9_DRYP	PORT11_9P	60
61	GND	PORT11_10N	62
63	ADC_NC	PORT11_10P	64
65	ADCOFF	PORT11_11N	66
67	GND	PORT11_11P	68
69	SI_RST#	PORT11_12N	70
71	SI_LOL	PORT11_12P	72
73	GND	PORT11_13N	74
75	GND	PORT11_13P	76
77	CLK_155MHZ_P	PORT11_DRYN	78
79	CLK_155MHZ_N	PORT11_DRYP	80
81	GND	PORT13_0N	82

Table 3.6: Mezzanine Card Socket Down connector pinout (J7).

83	GND	PORT13_0P	84
85	GND	PORT13_1N	86
87	GND	PORT13_1P	88
89	GND	PORT13_2N	90
91	GND	PORT13_2P	92
93	GND	PORT13_3N	94
95	GND	PORT13_3P	96
97	GND	PORT13_4N	98
99	GND	PORT13_4P	100
101	PORT15_0N	PORT13_5N	102
103	PORT15_0P	PORT13_5P	104
105	PORT15_1N	PORT13_6N	106
107	PORT15_1P	PORT13_6P	108
109	PORT15_2N	PORT13_7N	110
111	PORT15_2P	PORT13_7P	112
113	PORT15_3N	PORT13_8N	114
115	PORT15_3P	PORT13_8P	116
117	PORT15_4N	PORT13_9N	118
119	PORT15_4P	PORT13_9P	120
121	PORT15_5N	PORT13_10N	122
123	PORT15_5P	PORT13_10P	124
125	PORT15_6N	PORT13_11N	126
127	PORT15_6P	PORT13_11P	128
129	PORT15_7N	PORT13_12N	130
131	PORT15_7P	PORT13_12P	132
133	PORT15_8N	PORT13_13N	134
135	PORT15_8P	PORT13_13P	136
137	PORT15_9N	PORT13_DRYN	138
139	PORT15_9P	PORT13_DRYP	140
141	PORT15_10N	VCA5V0	142
143	PORT15_10P	VCA5V0	144
145	PORT15_11N	VCA5V0	146
147	PORT15_11P	VCA5V0	148
149	PORT15_12N	VCA5V0	150
151	PORT15_12P	VCA5V0	152
153	PORT15_13N	VCA5V0	154
155	PORT15_13P	VCA5V0	156
157	 PORT15_DRYN	VCA5V0	158
159	PORT15 DRYP	VCA5V0	160

1	AMCTMS	PORT8_DRYP	2
3	AMCTCK	PORT8_DRYN	4
5	AMCTDI	PORT8_13P	6
7	AMCTDO	PORT8_13N	8
9	GND	PORT8_12P	10
11	GP_SDA	PORT8_12N	12
13	GP_SCL	PORT8_11P	14
15	GND	PORT8_11N	16
17	GND	PORT8_10P	18
19	GND	PORT8_10N	20
21	PORT10_DRYP	PORT8_9P	22
23	PORT10_DRYN	PORT8_9N	24
25	PORT10_13P	PORT8_8P	26
27	PORT10_13N	PORT8_8N	28
29	PORT10_12P	PORT8_7P	30
31	PORT10_12N	PORT8_7N	32
33	PORT10_11P	PORT8_6P	34
35	PORT10_11N	PORT8_6N	36
37	PORT10_10P	PORT8_5P	38
39	PORT10_10N	PORT8_5N	40
41	PORT10_9P	PORT8_4P	42
43	PORT10_9N	PORT8_4N	44
45	PORT10_8P	PORT8_3P	46
47	PORT10_8N	PORT8_3N	48
49	PORT10_7P	PORT8_2P	50
51	PORT10_7N	PORT8_2N	52
53	PORT10_6P	PORT8_1P	54
55	PORT10_6N	PORT8_1N	56
57	PORT10_5P	PORT8_0P	58
59	PORT10_5N	PORT8_0N	60
61	PORT10_4P	GND	62
63	PORT10_4N	GND	64
65	PORT10_3P	GND	66
67	PORT10_3N	SI_SDA	68
69	PORT10_2P	SI_SCL	70
71	PORT10_2N	GND	72
73	PORT10_1P	SI_LOS	74
75	PORT10_1N	MEZZ_ADDR	76
77	PORT10_0P	GND	78
79	PORT10_0N	CLK_38MHZ	80
81	PORT12_DRYP	GND	82

Table 3.7: Mezzanine Card Socket Down connector pinout (J8).

83	PORT12_DRYN	GND	84
85	PORT12_13P	GND	86
87	PORT12_13N	GND	88
89	PORT12_12P	GND	90
91	PORT12_12N	GND	92
93	PORT12_11P	GND	94
95	PORT12_11N	GND	96
97	PORT12_10P	GND	98
99	PORT12_10N	GND	100
101	PORT12_9P	PORT14_DRYP	102
103	PORT12_9N	PORT14_DRYN	104
105	PORT12_8P	PORT14_13P	106
107	PORT12_8N	PORT14_13N	108
109	PORT12_7P	PORT14_12P	110
111	PORT12_7N	PORT14_12N	112
113	PORT12_6P	PORT14_11P	114
115	PORT12_6N	PORT14_11N	116
117	PORT12_5P	PORT14_10P	118
119	PORT12_5N	PORT14_10N	120
121	PORT12_4P	PORT14_9P	122
123	PORT12_4N	PORT14_9N	124
125	PORT12_3P	PORT14_8P	126
127	PORT12_3N	PORT14_8N	128
129	PORT12_2P	PORT14_7P	130
131	PORT12_2N	PORT14_7N	132
133	PORT12_1P	PORT14_6P	134
135	PORT12_1N	PORT14_6N	136
137	PORT12_0P	PORT14_5P	138
139	PORT12_0N	PORT14_5N	140
141	VCC3V3	PORT14_4P	142
143	VCC3V3	PORT14_4N	144
145	VCC3V3	PORT14_3P	146
147	VCC3V3	PORT14_3N	148
149	VCC3V3	PORT14_2P	150
151	VCC3V3	PORT14_2N	152
153	VCC+12V	PORT14_1P	154
155	VCC+12V	PORT14_1N	156
157	VCC+12V	PORT14_0P	158
159	VCC+12V	PORT14_0N	160

3.3 Mezzanine Card Socket Central Connector

1	+3.3V	+3.3V	2
3	GND	GND	4
5	CLK_N	GND	6
7	CLK_P	GND	8
9	GND	LOCK	10
11	GND	RATE	12
13	DATA_N	GND	14
15	DATA_P	GND	16
17	GND	GND	18
19	+5V	+5V	20

Table 3.8: Mezzanine Card Socket Central connector pinout (J10).

4 VXS Crate Power Supply Specification

Table 4.1: Selection of power supply modules for the VXS crate. The total maximum power of a
VXS crate with this power supply configuration 2760W. The crate including the power
supply was manufactured by Wiener Inc.

Voltage	# modules	Current
+12.0V	3	138A
+ 5.0 V	1	115A
+ 3.3V	1	115A
-12.0V	1	46A

5 GANDALF Module Device Overview

Figure 5.1: Overview of the placed devices including Reference Designators on the top side of the PCB.

Figure 5.2: Overview of the placed devices including Reference Designators on the bottom site of the PCB.

6 Contact

You have more questions? Please contact:

Dr. Florian Herrmann Physikalisches Institut Universitaet Freiburg Hermann-Herder-Str. 3 79104 Freiburg Email: florian.herrmann@cern.ch